by hhs on 10/27/24, 2:47 PM with 53 comments
by alan-crowe on 10/27/24, 9:56 PM
My best example of the split is https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives Wikpedia notes that "The list of unsuccessful proposed proofs started with Euler's, published in 1740,[3] although already in 1721 Bernoulli had implicitly assumed the result with no formal justification." The split between pure (Euler) and applied(Bernoulli) is already there.
The result is hard to prove because it isn't actually true. A simple proof will apply to a counter example, so cannot be correct. A correct proof will have to use the additional hypotheses needed to block the counter examples, so cannot be simple.
Since the human life span is 70 years, I face an urgent dilemma. Do I master the technique needed to understand the proof (fun) or do I crack on and build things (satisfaction)? Pure mathematicians are planning on constructing long and intricate chains of reasoning; a small error can get amplified into a error that matters. From a contradiction one can prove anything. Applied mathematics gets applied to engineering; build a prototype and discover problems with tolerances, material impurities, and annoying edge cases in the mathematical analysis. A error will likely show up in the prototype. Pure? Applied? It is really about the ticking of the clock.
by bonoboTP on 10/28/24, 3:25 AM
by kwojno on 10/29/24, 8:23 PM
by DiscourseFan on 10/27/24, 11:18 PM